CASP15 details
04 05 22
The details of the latest Critical Assessment of Structure Prediction (CASP) experiment to determine and advance the state of the art in modeling biomolecular structures have been published https://predictioncenter.org/casp15/index.cgi.
Modeling categories
The core of CASP remains the same: blind testing of methods with independent assessment against experiment to establish the state-of-art in modeling proteins and protein complexes. CASP15 will include following categories.
- Single Protein and Domain Modeling As in previous CASPs, the accuracy of single proteins and where appropriate single protein domains will be assessed, using the established metrics. Two changes will be the elimination of the distinction between template-based and template-free modeling, and an emphasis on the fine-grained accuracy of models, such as local main chain motifs and side chains. Because of the high accuracy of the new modeling methods, we expect assessment against high resolution experimental structures will be most informative.
- Assembly As in recent CASPs, the ability of current methods to correctly model domain-domain, subunit-subunit, and protein-protein interactions will be assessed. We will again work in close collaboration with our CAPRI partners. Because of the promising deep learning results reported so far, substantial progress is expected.
- Accuracy Estimation Members of the community will be invited to submit accuracy estimates for multimeric complexes and inter-subunit interfaces. There will no longer be a category for estimating the accuracy of single protein models, since it has become clear these cannot compete with modeling method specific estimates. Instead, there will be increased emphasis on assessment of self-reported accuracy estimates at the atomic level. Note the units will now be pLDDT, not Angstroms.
- RNA structures and complexes There will be a pilot experiment to assess the accuracy of modeling for RNA models and protein-RNA complexes. The assessment will be done in collaboration with the RNA-Puzzles and Marta Szachniuk's group in Poznan.
- Protein-ligand complexes Subject to the availability of adequate resources, there will also be a pilot experiment in this area. Deep-learning is already having an impact here, and there is high interest because of the relevance to drug design.
- Data Assisted As in recent CASPs, there will be assessment of the extent to which the accuracy of models can be increased by the provision of sparse data, particularly that provided by SAXS and mass spectroscopy/chemical crosslinking. Only targets where these low-resolution data are likely to be useful will be considered, that is, large single proteins and complexes. As previously, we will work with collaborators to obtain the necessary experimental data. Targets will initially be released without the experimental data, followed by a second round of prediction including those data.
- Protein conformational ensembles Following the success of deep-learning methods for single structures, it is increasingly important to assess methods for predicting structure ensembles. This is a huge area, ranging from the many conformations of disordered regions to the small number of conformations that may be involved in allosteric transitions and enzyme excited states to local protein dynamics. While it is clear that deep learning and other methods have the potential to generate ensembles in some circumstances, the difficulty is in finding cases where there are sufficiently accurate and extensive experimental data to allow rigorous assessment. One promising avenue is modeling sets of conformations in regions of cryo-EM structures where there is evidence of local conformational heterogeneity. If suitable cases arise, we will present these as a special type of sub-target. First requesting conformational ensembles that will be evaluated against the election density map and then in a possible second stage providing the map for data assisted ensemble prediction. A second possibility is for cases where detailed NMR data have already established the structure of two or more conformations. We have a good lead for a few targets of this type. In addition to this, we are considering a non-blind experiment (a departure from normal CASP practice), where we will first ask those interested to reproduce the known conformations. We will also ask participants to identify any additional conformations that appear to be present. It may then be possible to test these against existing or new experimental data.
Details of the targets will be made available over the next week https://predictioncenter.org/casp15/targetlist.cgi.